Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(26): e2215556120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339210

RESUMO

Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNALys3, and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U-A and G-C base pairs of tRNALys3. HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.


Assuntos
Anticódon , RNA , Conformação de Ácido Nucleico , Espalhamento a Baixo Ângulo , Difração de Raios X , RNA de Transferência de Lisina/química
2.
J Biol Chem ; 299(2): 102799, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528062

RESUMO

Collagen triple helices are critical in the function of mannan-binding lectin (MBL), an oligomeric recognition molecule in complement activation. The MBL collagen regions form complexes with the serine proteases MASP-1 and MASP-2 in order to activate complement, and mutations lead to common immunodeficiencies. To evaluate their structure-function properties, we studied the solution structures of four MBL-like collagen peptides. The thermal stability of the MBL collagen region was much reduced by the presence of a GQG interruption in the typical (X-Y-Gly)n repeat compared to controls. Experimental solution structural data were collected using analytical ultracentrifugation and small angle X-ray and neutron scattering. As controls, we included two standard Pro-Hyp-Gly collagen peptides (POG)10-13, as well as three more peptides with diverse (X-Y-Gly)n sequences that represented other collagen features. These data were quantitatively compared with atomistic linear collagen models derived from crystal structures and 12,000 conformations obtained from molecular dynamics simulations. All four MBL peptides were bent to varying degrees up to 85o in the best-fit molecular dynamics models. The best-fit benchmark peptides (POG)n were more linear but exhibited a degree of conformational flexibility. The remaining three peptides showed mostly linear solution structures. In conclusion, the collagen helix is not strictly linear, the degree of flexibility in the triple helix depends on its sequence, and the triple helix with the GQG interruption showed a pronounced bend. The bend in MBL GQG peptides resembles the bend in the collagen of complement C1q and may be key for lectin pathway activation.


Assuntos
Colágeno , Ativação do Complemento , Lectina de Ligação a Manose , Colágeno/química , Lectina de Ligação a Manose/química , Lectina de Ligação a Manose/metabolismo , Soluções/química , Conformação Proteica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Relação Estrutura-Atividade , Estabilidade Proteica , Espalhamento a Baixo Ângulo , Difração de Nêutrons , Ultracentrifugação , Simulação de Dinâmica Molecular , Cristalografia por Raios X , Maleabilidade
3.
J Phys Chem B ; 126(39): 7615-7620, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36150186

RESUMO

Understanding how high hydrostatic pressure affects biomacromolecular interaction is important for deciphering the molecular mechanisms by which organisms adapt to live at the bottom of the ocean. The relative effect of hydrostatic pressure on the rates of folding/unfolding reactions is defined by the volumetric properties of the transition state ensemble relative to the folded and unfolded states. All-atom structure-based molecular dynamics simulations combined with quantitative computational protocol to compute volumes from three-dimensional coordinates allow volumetric mapping of protein folding landscape. This, is turn, provides qualitative understanding of the effects of hydrostatic pressure on energy landscape of proteins. The computational results for six different proteins are directly benchmark against experimental data and show an excellent agreement. Both experiments and computation show that the transition-state ensemble volume appears to be in-between the folded and unfolded state volumes, and thus the hydrostatic pressure accelerates protein unfolding.


Assuntos
Dobramento de Proteína , Desdobramento de Proteína , Simulação de Dinâmica Molecular , Proteínas
4.
Biophys J ; 121(24): 4892-4899, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35962547

RESUMO

High hydrostatic pressure can have profound effects on the stability of biomacromolecules. The magnitude and direction (stabilizing or destabilizing) of this effect is defined by the volume changes in the system, ΔV. Positive volume changes will stabilize the starting native state, whereas negative volume changes will lead to the stabilization of the final unfolded state. For the DNA double helix, experimental data suggested that when the thermostability of dsDNA is below 50°C, increase in hydrostatic pressure will lead to destabilization; i.e., helix-to-coil transition has negative ΔV. In contrast, the dsDNA sequences with the thermostability above 50°C showed positive ΔV values and were stabilized by hydrostatic pressure. In order to get insight into this switch in the response of dsDNA to hydrostatic pressure as a function of temperature, first we further validated this trend using experimental measurements of ΔV for 10 different dsDNA sequences using pressure perturbation calorimetry. We also developed a computational protocol to calculate the expected volume changes of dsDNA unfolding, which was benchmarked against the experimental set of 50 ΔV values that included, in addition to our data, the values from the literature. Computation predicts well the experimental values of ΔV. Such agreement between computation and experiment lends credibility to the computation protocol and provides molecular level rational for the observed temperature dependence of ΔV that can be traced to the hydration. Difference in the ΔV value for A/T versus G/C basepairs is also discussed.


Assuntos
DNA , DNA/química , Pressão Hidrostática , Temperatura , Calorimetria , Termodinâmica
5.
J Phys Chem B ; 126(6): 1212-1231, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35128921

RESUMO

Understanding protein folding is crucial for protein sciences. The conformational spaces and energy landscapes of cold (unfolded) protein states, as well as the associated transitions, are hardly explored. Furthermore, it is not known how structure relates to the cooperativity of cold transitions, if cold and heat unfolded states are thermodynamically similar, and if cold states play important roles for protein function. We created the cold unfolding 4-helix bundle DCUB1 with a de novo designed bipartite hydrophilic/hydrophobic core featuring a hydrogen bond network which extends across the bundle in order to study the relative importance of hydrophobic versus hydrophilic protein-water interactions for cold unfolding. Structural and thermodynamic characterization resulted in the discovery of a complex energy landscape for cold transitions, while the heat unfolded state is a random coil. Below ∼0 °C, the core of DCUB1 disintegrates in a largely cooperative manner, while a near-native helical content is retained. The resulting cold core-unfolded state is compact and features extensive internal dynamics. Below -5 °C, two additional cold transitions are seen, that is, (i) the formation of a water-mediated, compact, and highly dynamic dimer, and (ii) the onset of cold helix unfolding decoupled from cold core unfolding. Our results suggest that cold unfolding is initiated by the intrusion of water into the hydrophilic core network and that cooperativity can be tuned by varying the number of core hydrogen bond networks. Protein design has proven to be invaluable to explore the energy landscapes of cold states and to robustly test related theories.


Assuntos
Dobramento de Proteína , Proteínas , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Desnaturação Proteica , Desdobramento de Proteína , Proteínas/química , Termodinâmica
6.
Biochemistry ; 60(41): 3086-3097, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34613715

RESUMO

Understanding the thermodynamic mechanisms of adaptation of biomacromolecules to high hydrostatic pressure can help shed light on how piezophilic organisms can survive at pressures reaching over 1000 atmospheres. Interaction of proteins with nucleic acids is one of the central processes that allow information flow encoded in the sequence of DNA. Here, we report the results of a study on the interaction of cold shock protein B from Bacillus subtilis (CspB-Bs) with heptadeoxythymine template (pDT7) as a function of temperature and hydrostatic pressure. Experimental data collected at different CspB-Bs:pDT7 ratios were analyzed using a thermodynamic linkage model that accounts for both protein unfolding and CspB-Bs:pDT7 binding. The global fit to the model provided estimates of the stability of CspB-Bs, ΔGProto, the volume change upon CspB-Bs unfolding, ΔVProt, the association constant for CspB-Bs:pDT7 complex, Kao, and the volume changes upon pDT7 single-stranded DNA (ssDNA) template binding, ΔVBind. The protein, CspB-Bs, unfolds with an increase in hydrostatic pressure (ΔVProt < 0). Surprisingly, our study showed that ΔVBind < 0, which means that the binding of CspB-Bs to ssDNA is stabilized by an increase in hydrostatic pressure. Thus, CspB-Bs binding to pDT7 represents a case of linked equilibrium in which folding and binding react differently upon an increase in hydrostatic pressure: protein folding/unfolding equilibrium favors the unfolded state, while protein-ligand binding equilibrium favors the bound state. These opposing effects set a "maximum attainable" pressure tolerance to the protein-ssDNA complex under given conditions.


Assuntos
Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , Bacillus subtilis/química , Proteínas de Bactérias/química , DNA de Cadeia Simples/química , Pressão Hidrostática , Ligação Proteica , Desdobramento de Proteína , Temperatura , Termodinâmica
7.
Annu Rev Biophys ; 50: 343-372, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33637008

RESUMO

Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments. We present the state of recent progress in extreme environmental genomics. We then present an overview of our current understanding of the biomolecular adaptation to extreme conditions. As our current and future understanding of biomolecular structure-function relationships in extremophiles requires methodologies adapted to extremes of pressure, temperature, and chemical composition, advances in instrumentation for probing biophysical properties under extreme conditions are presented. Finally, we briefly discuss possible future directions in extreme biophysics.


Assuntos
Ambientes Extremos , Animais , Biofísica , Extremófilos , Humanos , Temperatura
8.
Proc Natl Acad Sci U S A ; 117(36): 22122-22127, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839332

RESUMO

Cnidarian fluorescent protein (FP) derivatives such as GFP, mCherry, and mEOS2 have been widely used to monitor gene expression and protein localization through biological imaging because they are considered functionally inert. We demonstrate that FPs specifically bind amyloid fibrils formed from many natural peptides and proteins. FPs do not bind other nonamyloid fibrillar structures such as microtubules or actin filaments and do not bind to amorphous aggregates. FPs can also bind small aggregates formed during the lag phase and early elongation phase of fibril formation and can inhibit amyloid fibril formation in a dose-dependent manner. These findings suggest caution should be taken in interpreting FP-fusion protein localization data when amyloid structures may be present. Given the pathological significance of amyloid-related species in some diseases, detection and inhibition of amyloid fibril formation using FPs can provide insights on developing diagnostic tools.


Assuntos
Proteínas Amiloidogênicas/química , Proteínas de Fluorescência Verde/química , Microscopia Confocal/métodos , Sequência de Aminoácidos , Humanos , Proteínas Luminescentes , Conformação Proteica , Proteína Vermelha Fluorescente
9.
J Biomol Struct Dyn ; 38(12): 3700-3719, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31608807

RESUMO

We studied multiple sequence alignment (MSA) consensus amino acid distributional patterns in 2844 amino acid sequences of the eight enzymes of the Kreb's oxidative tricarboxylic acid pathway (oTCA) in Archaea, Bacteria and Eukarya and 5545 sequences of 33 bacteria as geochronologically separated enzymes with MSA consensus site modal identities. The 33 bacteria were 20 presumptive examples of early-oldest (Hadean-Archaean) ('Epoch I') or 13 late-newest (contemporary) ('Epoch III') appearing enzymes on Earth. The enzyme's MSA consensus sites were identified by their modal identity, % Occupancy in one of nine-graded evolutionary-conservation zones (CZs) and the Euclidean distance (Å) from each of their consensus MSA Cɑs to the same atom (Anchor-atom) in their reported functional center. These MSA consensus sites are tetrad-data points called recovered-amino acids (RAA). Across Domains, the % Occupancies of the eight-dominant RAAs of the Kreb's cycle and the 33 bacteria were found to be similarly ranked. Compared to Trifonov's 'putative ranked temporal order of the appearance of amino acids on Earth' (TOAE), the greatest statistical concordance with tetrad-RAAs across Domains were those characterized as within the most-evolutionary conserved conservation zone (CZ9), typically nearest (Å) their enzyme's catalytic/active center. The geochronologically characterized early-oldest Hadean-Archaean Bacteria 'Epoch I' enzymes, compared to late-newest Bacteria enzymes, had greater average numbers of amino acid residues/sequence and a statistically significant larger variability in their RAA compositional-Å3-volumes. The late-newest 'Epoch III' enzymes had statistically significant lower volumetric values, specifically, their native Å3-volume, void-volume and volume change on unfolding. Our enzyme data suggest a geochronological trace of 'metabolism's progressive emergence'.Communicated by Ramaswamy H. Sarma.


Assuntos
Archaea , Evolução Molecular , Sequência de Aminoácidos , Archaea/genética , Eucariotos , Alinhamento de Sequência
10.
Proteins ; 88(4): 584-592, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31618488

RESUMO

Hydrostatic pressure has a vital role in the biological adaptation of the piezophiles, organisms that live under high hydrostatic pressure. However, the mechanisms by which piezophiles are able to adapt their proteins to high hydrostatic pressure is not well understood. One proposed hypothesis is that the volume changes of unfolding (ΔVTot ) for proteins from piezophiles is distinct from those of nonpiezophilic organisms. Since ΔVTot defines pressure dependence of stability, we performed a comprehensive computational analysis of this property for proteins from piezophilic and nonpiezophilic organisms. In addition, we experimentally measured the ΔVTot of acylphosphatases and thioredoxins belonging to piezophilic and nonpiezophilic organisms. Based on this analysis we concluded that there is no difference in ΔVTot for proteins from piezophilic and nonpiezophilic organisms. Finally, we put forward the hypothesis that increased concentrations of osmolytes can provide a systemic increase in pressure stability of proteins from piezophilic organisms and provide experimental thermodynamic evidence in support of this hypothesis.


Assuntos
Hidrolases Anidrido Ácido/química , Adaptação Fisiológica , Proteínas Arqueais/química , Proteínas de Bactérias/química , Proteoma/química , Tiorredoxinas/química , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Organismos Aquáticos , Archaea/química , Archaea/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenômenos Biomecânicos , Clonagem Molecular , Biologia Computacional/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Pressão Hidrostática , Concentração Osmolar , Estabilidade Proteica , Proteoma/genética , Proteoma/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Acilfosfatase
11.
J Chem Inf Model ; 58(5): 1141-1151, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29716188

RESUMO

Antimicrobial peptides (AMPs) have been identified as a potential new class of anti-infectives for drug development. There are a lot of computational methods that try to predict AMPs. Most of them can only predict if a peptide will show any antimicrobial potency, but to the best of our knowledge, there are no tools which can predict antimicrobial potency against particular strains. Here we present a predictive model of linear AMPs being active against particular Gram-negative strains relying on a semi-supervised machine-learning approach with a density-based clustering algorithm. The algorithm can well distinguish peptides active against particular strains from others which may also be active but not against the considered strain. The available AMP prediction tools cannot carry out this task. The prediction tool based on the algorithm suggested herein is available on https://dbaasp.org.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Aprendizado de Máquina , Modelos Teóricos , Análise por Conglomerados , Simulação por Computador
12.
Biochemistry ; 57(18): 2649-2656, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29648806

RESUMO

In order to elucidate the contribution of charged residues to protein stabilization at temperatures of over 100 °C, we constructed many mutants of the CutA1 protein ( EcCutA1) from Escherichia coli. The goal was to see if one can achieve the same stability as for a CutA1 from hyperthermophile Pyrococcus horikoshii that has the denaturation temperature near 150 °C. The hydrophobic mutant of EcCutA1 ( Ec0VV) with denaturation temperature ( Td) of 113.2 °C was used as a template for mutations. The highest Td of Ec0VV mutants substituted by a single charged residue was 118.4 °C. Multiple ion mutants were also constructed by combination of single mutants and found to have an increased thermostability. The highest stability of multiple mutants was a mutant substituted by nine charged residues that had a Td of 142.2 °C. To evaluate the energy of ion-ion interactions of mutant proteins, we used the structural ensemble obtained by a molecular dynamics simulation at 300 K. The Td of ionic mutants linearly increases with the increments of the computed energy of ion-ion interactions for ionic mutant proteins even up to the temperatures near 140 °C, suggesting that ion-ion interactions cumulatively contribute to the stabilization of a protein at high temperatures.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Íons/química , Proteínas Mutantes/química , Sequência de Aminoácidos/genética , Estabilidade Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Proteínas Mutantes/genética , Conformação Proteica , Termodinâmica
13.
J Phys Chem B ; 121(35): 8300-8310, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28795561

RESUMO

Pressure is a well-known environmental stressor that can either stabilize or destabilize proteins. The volumetric change upon protein unfolding determines the effect of pressure on protein stability, where negative volume changes destabilized proteins at high pressures. High temperature often accompanies high pressure, for example, in the ocean depths near hydrothermal vents or near faults, so it is important to study the effect of temperature on the volumetric change upon unfolding. We previously detailed the magnitude and sign of the molecular determinants of volumetric change, allowing us to quantitatively predict the volumetric change upon protein unfolding. Here, we present a comprehensive analysis of the temperature dependence of the volumetric components of proteins, showing that hydration volume is the primary component that defines expansivities of the native and unfolded states and void volume only contributes slightly to the folded state expansivity.


Assuntos
Desdobramento de Proteína , Proteínas/química , Temperatura , Animais , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica
14.
Biophys J ; 113(5): 974-977, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28803626

RESUMO

A group of small molecules that stabilize proteins against high hydrostatic pressure has been classified as piezolytes, a subset of stabilizing cosolutes. This distinction would imply that piezolytes counteract the effects of high hydrostatic pressure through effects on the volumetric properties of the protein. The purpose of this study was to determine if cosolutes proposed to be piezolytes have an effect on the volumetric properties of proteins through direct experimental measurements of volume changes upon unfolding of model proteins lysozyme and ribonuclease A, in solutions containing varying cosolute concentrations. Solutions containing the proposed piezolytes glutamate, sarcosine, and betaine were used, as well as solutions containing the denaturants guanidinium hydrochloride and urea. Changes in thermostability were monitored using differential scanning calorimetry whereas changes in volume were monitored using pressure perturbation calorimetry. Our findings indicate that increasing stabilizing cosolute concentration increases the stability and transition temperature of the protein, but does not change the temperature dependence of volume changes upon unfolding. The results suggest that the pressure stability of a protein in solution is not directly affected by the presence of these proposed piezolytes, and so they cannot be granted this distinction.


Assuntos
Pressão Hidrostática , Modelos Teóricos , Estabilidade Proteica , Betaína/química , Calorimetria , Ácido Glutâmico/química , Muramidase/química , Ribonuclease Pancreático/química , Sarcosina/química , Soluções , Temperatura , Ureia/química
16.
Biochem J ; 474(13): 2203-2217, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28533266

RESUMO

Collagen adopts a characteristic supercoiled triple helical conformation which requires a repeating (Xaa-Yaa-Gly)n sequence. Despite the abundance of collagen, a combined experimental and atomistic modelling approach has not so far quantitated the degree of flexibility seen experimentally in the solution structures of collagen triple helices. To address this question, we report an experimental study on the flexibility of varying lengths of collagen triple helical peptides, composed of six, eight, ten and twelve repeats of the most stable Pro-Hyp-Gly (POG) units. In addition, one unblocked peptide, (POG)10unblocked, was compared with the blocked (POG)10 as a control for the significance of end effects. Complementary analytical ultracentrifugation and synchrotron small angle X-ray scattering data showed that the conformations of the longer triple helical peptides were not well explained by a linear structure derived from crystallography. To interpret these data, molecular dynamics simulations were used to generate 50 000 physically realistic collagen structures for each of the helices. These structures were fitted against their respective scattering data to reveal the best fitting structures from this large ensemble of possible helix structures. This curve fitting confirmed a small degree of non-linearity to exist in these best fit triple helices, with the degree of bending approximated as 4-17° from linearity. Our results open the way for further studies of other collagen triple helices with different sequences and stabilities in order to clarify the role of molecular rigidity and flexibility in collagen extracellular and immune function and disease.


Assuntos
Colágeno/química , Colágeno/metabolismo , Fragmentos de Peptídeos/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica
17.
Proc Natl Acad Sci U S A ; 114(9): E1627-E1632, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28196883

RESUMO

Theoretical and experimental studies have firmly established that protein folding can be described by a funneled energy landscape. This funneled energy landscape is the result of foldable protein sequences evolving following the principle of minimal frustration, which allows proteins to rapidly fold to their native biologically functional conformations. For a protein family with a given functional fold, the principle of minimal frustration suggests that, independent of sequence, all proteins within this family should fold with similar rates. However, depending on the optimal living temperature of the organism, proteins also need to modulate their thermodynamic stability. Consequently, the difference in thermodynamic stability should be primarily caused by differences in the unfolding rates. To test this hypothesis experimentally, we performed comprehensive thermodynamic and kinetic analyses of 15 different proteins from the thioredoxin family. Eight of these thioredoxins were extant proteins from psychrophilic, mesophilic, or thermophilic organisms. The other seven protein sequences were obtained using ancestral sequence reconstruction and can be dated back over 4 billion years. We found that all studied proteins fold with very similar rates but unfold with rates that differ up to three orders of magnitude. The unfolding rates correlate well with the thermodynamic stability of the proteins. Moreover, proteins that unfold slower are more resistant to proteolysis. These results provide direct experimental support to the principle of minimal frustration hypothesis.


Assuntos
Tiorredoxinas/química , Sequência de Aminoácidos , Cinética , Dobramento de Proteína , Temperatura , Termodinâmica
18.
Phys Biol ; 14(1): 013002, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169222

RESUMO

Over the past two decades there has been an increase in appreciation for the role of surface charge-charge interactions in protein folding and stability. The perception shifted from the belief that charge-charge interactions are not important for protein folding and stability to the near quantitative understanding of how these interactions shape the folding energy landscape. This led to the ability of computational approaches to rationally redesign surface charge-charge interactions to modulate thermodynamic properties of proteins. Here we summarize our progress in understanding the role of charge-charge interactions for protein stability using examples drawn from my own laboratory and touch upon unanswered questions.


Assuntos
Dobramento de Proteína , Estabilidade Proteica , Proteínas/química , Animais , Humanos , Conformação Proteica , Eletricidade Estática , Termodinâmica
19.
Nat Commun ; 8: 14561, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169271

RESUMO

Hydrostatic pressure is an important environmental variable that plays an essential role in biological adaptation for many extremophilic organisms (for example, piezophiles). Increase in hydrostatic pressure, much like increase in temperature, perturbs the thermodynamic equilibrium between native and unfolded states of proteins. Experimentally, it has been observed that increase in hydrostatic pressure can both increase and decrease protein stability. These observations suggest that volume changes upon protein unfolding can be both positive and negative. The molecular details of this difference in sign of volume changes have been puzzling the field for the past 50 years. Here we present a comprehensive thermodynamic model that provides in-depth analysis of the contribution of various molecular determinants to the volume changes upon protein unfolding. Comparison with experimental data shows that the model allows quantitative predictions of volume changes upon protein unfolding, thus paving the way to proteome-wide computational comparison of proteins from different extremophilic organisms.


Assuntos
Adaptação Fisiológica , Extremófilos/fisiologia , Modelos Moleculares , Dobramento de Proteína , Proteínas/química , Pressão Hidrostática , Estabilidade Proteica , Temperatura , Termodinâmica
20.
Biophys Chem ; 216: 37-43, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27393931

RESUMO

The 39-residue fragment of human prostatic acidic phosphatase (PAP) is found in high concentrations in semen and easily form fibrils. Previous work has shown that fibrillization is accelerated with a deletion of the first 8, mostly charged residues and it was hypothesized that fibrillization depended on the dynamics of these peptides. To test this hypothesis we have measured the intramolecular diffusion of the full length and 8-residue deletion peptides at two different pHs and found a correlation with fibrillization lag time. These results can be explained by a simple kinetic model of the early stages of aggregation in which oligomerization is controlled by the rate of peptide reconfiguration.


Assuntos
Fosfatase Ácida/química , Fragmentos de Peptídeos/química , Amiloide/química , Difusão , Humanos , Concentração de Íons de Hidrogênio , Cinética , Agregados Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...